177 research outputs found

    An astrobiological study of high latitude martian analogue environments

    Get PDF
    The search for life on Mars is in part reliant on the understanding of Martian environments, both past and present, in terms of what life may inhabit these environments, how this life may be preserved in the rock record, and how this rock record may be detected during future missions to Mars. In particular, the upcoming European Space Agency mission ‘ExoMars’ has the primary aim to identify evidence of past or present life on Mars, and the work presented here is carried out within this context. Volcanism is a geological process common to both Earth and Mars, and this work sought to conduct a multidisciplinary astrobiological study of terrestrial volcanic and associated hydrothermal environments that exist geographically at high latitudes. Specifically, subglacial basaltic volcanic environments were explored in terms of phylogenetic diversity, preservation of biosignatures, and habitability under Martian conditions. Additionally, these and other volcanic environments were utilised in the development and testing of the Panoramic Camera – an instrument that will form an integral component of the ExoMars rover instrument suite. Results presented within this thesis demonstrate that subglacially erupted lavas provide a habitat for a diverse bacterial community, and that when such a community is subject to present-day Martian analogue conditions, survivability is significantly enhanced when a simulated subglacial volcanic system (i.e. heat and ice) is present. However, the generation of bioalteration textures – a biosignature common to glassy basaltic lavas – appears to be less common in subglacially-erupted lavas than their oceanic counterparts. Lastly, this work demonstrates the ability of the ExoMars PanCam in the detection of astrobiological targets, and shows the importance of utilising Martian analogue terrains both for biological studies, and also for testing rover instrumentation in preparation for upcoming missions

    Multiscale and multispectral characterization of mineralogy with the ExoMars 2020 rover remote sensing payload

    Get PDF
    This work was supported by the UK Space Agency (ST/P001297/1 and ST/P001394/1). Cousins also acknowledges the Royal Society of Edinburgh for funding.In 2020, the European Space Agency and Roscosmos will launch the ExoMars rover, with the scientific objective to detect evidence of life within the martian surface via the deployment of a 2 meter drill. The ExoMars Pasteur payload contains several imaging and spectroscopic instruments key to this objective: the Panoramic Camera (PanCam), Infrared Spectrometer for ExoMars (ISEM), and Close‐UP Imager (CLUPI). These instruments are able to collect data at a variety of spatial (sub‐mm to decimeter) and spectral (3.3 to 120 nm) resolutions across the 440 to 3300 nm wavelength range and collectively will form a picture of the geological and morphological characteristics of the surface terrain surrounding the rover. We deployed emulators of this instrument suite at terrestrial analog sites that formed in a range of aqueous environments to test their ability to detect and characterize science targets. We find that the emulator suite is able to effectively detect, characterize, and refine the compositions of multiple targets at working distances spanning from 2‐18 m. We report on: (i) the detection of hydrothermal alteration minerals including Fe‐smectites and gypsum from basaltic substrates, (ii) the detection of late‐stage diagenetic gypsum veins embedded in exposures of sedimentary mudstone, (iii) multispectral evidence of compositional differences detected from fossiliferous mudstones, and (iv) approaches to cross‐referencing multi‐scale and multi‐resolution data. These findings aid in the development of data products and analysis toolkits in advance of the ExoMars rover mission.Publisher PDFPeer reviewe

    UV luminescence characterisation of organics in Mars-analogue substrates

    Get PDF
    This project was supported by a Leverhulme Trust Research Project Grant (RPG-2015-071). C Cousins also wishes to acknowledge funding by the Royal Society of Edinburgh.Detection of organic matter is one of the core objectives of future Mars exploration. The ability to probe rocks, soils, and other geological substrates for organic targets is a high priority for in situ investigation, sample caching, and sample return. UV luminescence – the emission of visible light following UV irradiation – is a tool that is beginning to be harnessed for planetary exploration. We conducted  UV photoluminescence analyses of (i) Mars analogue sediments doped with polyaromatic hydrocarbons (PAHs; <15 ppm), (ii) carbonaceous CM chondrites and terrestrial kerogen (Type IV), and (iii) synthetic salt crystals doped with PAHs (2 ppm). We show that that detection of PAHs is possible within synthetic and natural gypsum, and synthetic halite. These substrates show the most apparent spectral modifications, suggesting that the most transparent minerals are more conducive to UV photoluminescence detection of trapped organic matter. Iron oxide, ubiquitously present on Mars surface, hampers but does not completely quench the UV luminescence emission. Finally, the maturity of organic carbonaceous material influences the luminescence response, resulting in a reduced signal for UV excitation wavelengths down to 225 nm. This study demonstrates the utility of UV luminescence spectroscopy for the analysis of mixed organic-inorganic materials applicable to Mars exploration.PostprintPeer reviewe

    Remote detection of past habitability at Mars-analogue hydrothermal alteration terrains using an ExoMars Panoramic Camera emulator

    Get PDF
    JKH is funded by a Birkbeck University of London Graduate Teaching Assistantship. CRC is funded by a Royal Society of Edinburgh Personal Research Fellowship co-funded by Marie Curie Actions. The Aberystwyth research leading to these results has been funded by the UK Space Agency, ExoMars Panoramic Camera (PanCam) Grant Nos. ST/G003114/1, ST/I002758/1, STL001454/1, and the UK Space Agency CREST2 PanCam-2020 research Grant No. ST/L00500X/1. Additional Aberystwyth funding has come from The European Community’s Seventh Framework Programme (FP7/2007-2013), Grant Agreement Nos. 21881 PRoVisG, 241523 PRoViScout, and Grant Agreement No. 312377 PRoViDE. PMG is funded by a UK Space Agency Aurora Fellowship (grants ST/J005215/1 and ST/L00254X/1).A major scientific goal of the European Space Agency’s ExoMars 2018 rover is to identify evidence of life within the martian rock record. Key to this objective is the remote detection of geological substrates that are indicative of past habitable environments, which will rely on visual (stereo wide-angle, and high resolution images) and multispectral (440–1000 nm) data produced by the Panoramic Camera (PanCam) instrument. We deployed a PanCam emulator at four hydrothermal sites in the Námafjall volcanic region of Iceland, a Mars-analogue hydrothermal alteration terrain. At these sites, sustained acidic–neutral aqueous interaction with basaltic substrates (crystalline and sedimentary) has produced phyllosilicate, ferric oxide, and sulfate-rich alteration soils, and secondary mineral deposits including gypsum veins and zeolite amygdales. PanCam emulator datasets from these sites were complemented with (i) NERC Airborne Research and Survey Facility aerial hyperspectral images of the study area; (ii) in situ reflectance spectroscopy (400–1000 nm) of PanCam spectral targets; (iii) laboratory X-ray Diffraction, and (iv) laboratory VNIR (350–2500 nm) spectroscopy of target samples to identify their bulk mineralogy and spectral properties. The mineral assemblages and palaeoenvironments characterised here are analogous to neutral–acidic alteration terrains on Mars, such as at Mawrth Vallis and Gusev Crater. Combined multispectral and High Resolution Camera datasets were found to be effective at capturing features of astrobiological importance, such as secondary gypsum and zeolite mineral veins, and phyllosilicate-rich substrates. Our field observations with the PanCam emulator also uncovered stray light problems which are most significant in the NIR wavelengths and investigations are being undertaken to ensure that the flight model PanCam cameras are not similarly affected.Publisher PDFPeer reviewe

    Glaciovolcanic hydrothermal environments in Iceland and implications for their detection on Mars

    Get PDF
    Volcanism has been a dominant process on Mars, along with a pervasive global cryosphere. Therefore, the interaction between these two is considered likely. Terrestrial glaciovolcanism produces distinctive lithologies and alteration terrains, as well as hydrothermal environments that can be inhabited by microorganisms. Here, we provide a framework for identifying evidence of such glaciovolcanic environments during future Mars exploration, and provide a descriptive reference for active hydrothermal environments to be utilised for future astrobiological studies. Remote sensing data were combined with field observations and sample analysis that included X-ray diffraction, Raman spectroscopy, thin section petrography, scanning electron microscopy, electron dispersive spectrometer analysis, and dissolved water chemistry to characterise samples from two areas of basaltic glaciovolcanism: Askja and Kverkfjöll volcanoes in Iceland. The glaciovolcanic terrain between these volcanoes is characterised by subglacially-erupted fissure swarm ridges, which have since been modified by multiple glacial outburst floods. Active hydrothermal environments at Kverkfjöll include hot springs, anoxic pools, glacial meltwater lakes, and sulfur- and iron- depositing fumaroles, all situated within ice-bound geothermal fields. Temperatures range from 0 °C - 94.4 °C, and aqueous environments are acidic - neutral (pH 2 - 7.5) and sulfate-dominated. Mineralogy of sediments, mineral crusts, and secondary deposits within basalts suggest two types of hydrothermal alteration: a low-temperature ( 120 °C) assemblage signified by zeolite (heulandite) and quartz. These mineral assemblages are consistent with those identified at the Martian surface. In-situ and laboratory VNIR (440 – 1000 nm) reflectance spectra representative of Mars rover multispectral imaging show sediment spectral profiles to be influenced by Fe2 +/3 + - bearing minerals, regardless of their dominant bulk mineralogy. Characterising these terrestrial glaciovolcanic deposits can help identify similar processes on Mars, as well as identifying palaeoenvironments that may once have supported and preserved life

    The UK Centre for Astrobiology:A Virtual Astrobiology Centre. Accomplishments and Lessons Learned, 2011-2016

    Get PDF
    Authors thank all those individuals, UK research councils, funding agencies, nonprofit organisations, companies and corporations and UK and non-UK government agencies, who have so generously supported our aspirations and hopes over the last 5 years and supported UKCA projects. They include the STFC, the Engineering and Physical Sciences Research Council (EPSRC), the Natural Environmental Research Council (NERC), the EU, the UK Space Agency, NASA, the European Space Agency (ESA), The Crown Estate, Cleveland Potash and others. The Astrobiology Academy has been supported by the UK Space Agency (UKSA), National Space Centre, the Science and Technology Facilities Council (STFC), Dynamic Earth, The Royal Astronomical Society, The Rotary Club (Shetlands) and the NASA Astrobiology Institute.The UK Centre for Astrobiology (UKCA) was set up in 2011 as a virtual center to contribute to astrobiology research, education, and outreach. After 5 years, we describe this center and its work in each of these areas. Its research has focused on studying life in extreme environments, the limits of life on Earth, and implications for habitability elsewhere. Among its research infrastructure projects, UKCA has assembled an underground astrobiology laboratory that has hosted a deep subsurface planetary analog program, and it has developed new flow-through systems to study extraterrestrial aqueous environments. UKCA has used this research backdrop to develop education programs in astrobiology, including a massive open online course in astrobiology that has attracted over 120,000 students, a teacher training program, and an initiative to take astrobiology into prisons. In this paper, we review these activities and others with a particular focus on providing lessons to others who may consider setting up an astrobiology center, institute, or science facility. We discuss experience in integrating astrobiology research into teaching and education activities.Publisher PDFPeer reviewe

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search is presented for physics beyond the standard model (BSM) in final states with a pair of opposite-sign isolated leptons accompanied by jets and missing transverse energy. The search uses LHC data recorded at a center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to an integrated luminosity of approximately 5 inverse femtobarns. Two complementary search strategies are employed. The first probes models with a specific dilepton production mechanism that leads to a characteristic kinematic edge in the dilepton mass distribution. The second strategy probes models of dilepton production with heavy, colored objects that decay to final states including invisible particles, leading to very large hadronic activity and missing transverse energy. No evidence for an event yield in excess of the standard model expectations is found. Upper limits on the BSM contributions to the signal regions are deduced from the results, which are used to exclude a region of the parameter space of the constrained minimal supersymmetric extension of the standard model. Additional information related to detector efficiencies and response is provided to allow testing specific models of BSM physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters
    • …
    corecore